The Kramers problem for SDEs driven by small, accelerated Lévy noise with exponentially light jumps
نویسندگان
چکیده
منابع مشابه
First exit times for Lévy - driven diffusions with exponentially light jumps
We consider a dynamical system described by the differential equation ˙ Y t = −U ′ (Y t) with a unique stable point at the origin. We perturb the system by Lévy noise of intensity ε, to obtain the stochastic differential equation dX ε t = −U ′ (X ε t−)dt + εdL t. The process L is a symmetric Lévy process whose jump measure ν has exponentially light tails, ν([u, ∞)) ∼ exp(−u α), α > 0, u → ∞. We...
متن کاملOn Tamed Euler Approximations of SDEs Driven by Lévy Noise with Applications to Delay Equations
We extend the taming techniques for explicit Euler approximations of stochastic differential equations (SDEs) driven by Lévy noise with super-linearly growing drift coefficients. Strong convergence results are presented for the case of locally Lipschitz coefficients. Moreover, rate of convergence results are obtained in agreement with classical literature when the local Lipschitz continuity ass...
متن کاملKramers-like escape driven by fractional Gaussian noise.
We investigate the escape from a potential well of a test particle driven by fractional Gaussian noise with Hurst exponent 0<H<1. From a numerical analysis we demonstrate the exponential distribution of escape times from the well and analyze in detail the dependence of the mean escape time on the Hurst exponent H and the particle diffusivity D. We observe different behavior for the subdiffusive...
متن کاملReflected Backward SDEs with General Jumps
In the first part of this paper we give a solution for the one-dimensional reflected backward stochastic differential equation (BSDE for short) when the noise is driven by a Brownian motion and an independent Poisson point process. The reflecting process is right continuous with left limits (rcll for short) whose jumps are arbitrary. We first prove existence and uniqueness of the solution for a...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastics and Dynamics
سال: 2020
ISSN: 0219-4937,1793-6799
DOI: 10.1142/s0219493721500192